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SUMMARY

This paper proposes an e�cient and robust progressive-optimization procedure, employing cheap, �exible
and easy-to-program multigrid-aided �nite-di�erences for the computation of the sensitivity derivatives.
The entire approach is combined with an upwind �nite-volume method for the Euler and the Navier–
Stokes equations on cell-vertex unstructured (triangular) grids, and validated versus the inverse design
of an airfoil, under inviscid (subsonic and transonic) and laminar �ow conditions. The methodology
turns out to be robust and highly e�cient, the converged design optimization being obtained in a
computational time equal to that required by 11–17 (depending on the application) multigrid �ow
analyses on the �nest grid. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: optimization; inverse design; multigrid

1. INTRODUCTION

In the last years, many CFD researchers have devoted their e�orts to the development of robust
and e�cient gradient-based optimization procedures for the automatic design of �uid-dynamic
components. The most ambitious technique developed so far is the so-called one-shot method
[1, 2], which combines the objective function and the governing equations, so as to de�ne
and solve a unique problem. The alternative, iterative formulation of the optimization problem
consists of computing the �ow on a trial geometry, evaluating the objective function gradient,
and accordingly modifying the shape. Concerning its e�ciency, a progressive optimization
strategy has been proposed in Reference [3], based on the simultaneous convergence of the
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design process and of all iterative solutions involved (�ow analysis, gradient evaluation), also
including the global re�nement from a coarse to a su�ciently �ne mesh. Greater advantage
has been taken from the use of multiple grid levels by the methods proposed in References
[1, 4, 5], where the descent algorithm and the design variables work according to multigrid
[6] concepts.
Perturbed shapes and �nite di�erences can be used to evaluate the sensitivities. This method

is easy-to-program, is invariant with respect to the grid type, to the �ow modelization and to
the discretization scheme, and can be combined with black-box commercial codes. Its draw-
back is the large amount of computational work, almost proportional to the number of design
parameters. To overcome this low e�ciency, adjoint methods, in both continuous and discrete
form, have been developed and widely tested, see, e.g. Reference [7]: all sensitivities are com-
puted by solving a unique adjoint system, independent of the number of design parameters.
This approach is very e�cient, but a very cumbersome, analytical or symbolic, di�erentia-
tion of the governing equations is required. An alternative, much simpler, approach has been
proposed in Reference [8], where it is shown that when the objective function depends on sur-
face integrals, its gradient is not signi�cantly in�uenced by the �ow derivatives, which can be
dropped out. The cost of the gradient evaluation becomes negligible, but all applications pro-
posed so far lead to an improvement, rather to a complete optimization, of the performances
of the component under design. An alternative approach, which also takes advantage of the
multigrid concepts, but di�erently from References [1, 4, 5], has been recently proposed by the
authors [9]: this Multigrid-Aided Finite-Di�erence (MAFD) technique should be invariant with
respect to the grid type, to the �ow modelization and to the discretization scheme, as the stan-
dard �nite-di�erence approach; however, to date, it has been tested, in combination with the
progressive optimization strategy of Reference [3], only versus the inviscid �ow past a 3D tur-
bine nozzle in inviscid transonic �ow conditions, using a structured, cell-centred, �ow solver.
The aim of this paper is to demonstrate the invariance cited above, by combining the MAFD
progressive optimization technique with a di�erent, cell-vertex, unstructured discretization [10],
and by extending its application to a di�erent �ow model, namely to laminar �ow conditions.

2. FLOW SOLVER

An unstructured cell-vertex triangular grid is used to discretize the 2D Euler and Navier–
Stokes equations governing the �ows considered in this paper. A left state and a right state
are linearly reconstructed on the two sides of each interface (ij), obtained by connecting
either the barycentres or the circumcentres of two neighbouring triangles. Similar to the 1D
case, a unique left-neighbouring cell is used to de�ne the �ow gradient employed in the
reconstruction [10]: it is de�ned as the cell Cji which contains the prolongation of the side
(ji), plotted as a dot–dashed line in Figure 1. Standard one-dimensional limiters are also
applied straightforwardly. The �ux-di�erence-splitting of Roe [11] is then used to solve the
Riemann problem de�ned at each interface. A standard �nite-element Galerkin discretization
is used for the viscous terms.
The discretized governing equations are solved by means of a four-stage Runge–Kutta

scheme, coupled with an Implicit Residual Smoothing procedure: Reference [12] fully de-
scribes the technique here employed to de�ne the smoothing lines on cell-vertex un-
structured grids.
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Figure 1. Higher-order reconstruction.

A standard V-cycle full multigrid (FMG) [6] has been also implemented both to accelerate
convergence to steady state and to compute the MAFD sensitivities. Finer grids are created
during the nested iteration by means of a global uniform re�nement, improved by a grid-point
adjustment.

3. PROGRESSIVE OPTIMIZATION

The simultaneous convergence of the design process and of the �ow analysis, also including
the global re�nement from a coarse to a su�ciently �ne mesh, is the basis of the progressive
optimization strategy proposed in Reference [3] and here employed: less accurate sensitivity
derivatives (i.e. with partially converged �ow solutions computed on coarser levels) are used
when the geometry is far from the optimal one; then, the convergence level of the �ow solution
and the number of mesh points are increased while approaching the optimum. Starting the
optimization on coarser grids and using partially converged �ow solutions drastically reduce
the computational cost of the entire optimization procedure, without a�ecting its robustness
and capability of �nding the optimum, as demonstrated by the large number of applications
proposed so far. Full details can be found in References [3, 9].

4. MULTIGRID-AIDED FINITE-DIFFERENCE SENSITIVITIES

The MAFD procedure proposed in this paper aims at reducing the computational work required
by the �ow computation on perturbed geometries, while maintaining the advantages cited
in Section 1. According to the so-called dual viewpoint of the multigrid (MG) technique,
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a constant term is computed at each MG cycle and added to the right-hand side on the
coarser grid level: as known, this term represents an approximate value of the relative local
truncation error (RLTE) between the �ner grid and the coarser one [6]. Accordingly, the
MAFD method is based on the following important considerations: (i) the MG strategy solves
the �ow equations on coarser grid levels with the same accuracy of the �ner level, thanks
to the addition of the RLTE term. Moreover, (ii) a correct choice of the design parameters
should give a smooth perturbation of the blade pro�le, that can be seen e�ectively on a coarser
level. Finally, (iii) the approximate RLTE, which mainly represents the di�erence of accuracy
between two nested grid levels, is not a�ected by a small, smooth perturbation of one design
parameter. On the basis of these three considerations, the proposed method allows to compute
the di�erence between the �ow solutions of two perturbed geometries using a coarser grid
level and a value of the RLTE computed only once, using the unperturbed geometry. Centred
�nite di�erences have been preferred with respect to one-side di�erences for robustness, rather
than for accuracy. However, an exhaustive comparison between the two possible approaches
has not been performed yet. It is noteworthy that almost identical performances are obtained
with a step-size �� ranging from 10−3 to 10−5, provided that the convergence level (log10
of the �ow residual) of the coarse-grid solution for the perturbed shapes p, is related to the
current convergence level of the �nest grid solution f, by the following empirical relation:

p=f − 1− 0:5(3 + log10��) (1)

It is noteworthy that the coarse-grid evaluation of the perturbed �ow �elds is very e�cient,
while preserving the �ne-grid accuracy: the coarser grid levels have a much lower number of
cells and allow the use of a higher time step (the time step is at least doubled at each coars-
ening). The required computational work still depends on the number of design parameters
N�, but has been drastically reduced.

5. RESULTS

The inverse design of an airfoil, in both inviscid (subsonic and transonic) and laminar �ow
conditions, has been approached in this paper to validate the proposed strategy, namely to
check its capability to reach the optimum and its e�ciency: the target shape, de�ned by
known values of the design parameters �j, is used to compute a target pressure distribution,
p̂, that must be matched by the pressure distribution p, computed on the current trial shape:
accordingly, the objective function is de�ned as

I(^)= 1
2S

∫
S
[p− p̂]2 dS (2)

All applications have been obtained with the same code, except for the addition of a simple
high-frequency �ltering (smoothing) of the target and of the computed pressure distributions,
when evaluating the sensitivities in the transonic �ow case, where a sharp shock is captured
by the �ow solver. The known target airfoil has been preliminarily de�ned by combining
the four orthogonal (two symmetric and two antisymmetric) base functions [9] provided in
Figure 2, with weights (or design parameters) �1 = 1:2, �2 = 0:5, �3 = 0:1 and �4 = 0:1, see
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Figure 2. Orthogonal base functions.
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Figure 3. Target, initial and optimal pro�les.

the solid line plotted in Figure 3. In all cases, the initial pro�le, plotted as a dashed line
in Figure 3, is de�ned by the design parameters �1 = 3, �2 = 0, �3 = 0 and �4 = 0. Both the
MG and the progressive optimization employ three grid levels, the �nest mesh being com-
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Figure 4. Convergence histories (inviscid subsonic).

posed of 11 734 nodes and 22 960 triangles (392 nodes on the airfoil). The two grid re�ne-
ments have been always set for log10|∇I |6 − 2:5 and log10|∇I |6 − 3:5, respectively. The
whole optimization process is stopped when log10|∇I |6 − 5:0 at the �nest level, which is
even excessive for engineering applications. Both subsonic and transonic inviscid �ow con-
ditions have been considered (incidence angle �=1◦), with M∞=0:5 and 0.8, respectively.
Figures 4 and 5 propose the convergence histories of the �ow residual, of the objective func-
tion and of the magnitude of the objective function gradient, for the subsonic and the transonic
regimes, respectively. One work unit is de�ned as the computational time required to run one
converged MG analysis of the target airfoil on the �nest mesh.
The optimization procedure is �rstly applied on the coarsest level, which cannot take ad-

vantage of the MAFD procedure. In the subsonic (transonic) test case, the �rst grid re�nement
is performed after 4 (0.8) work units. At the second grid level, the MAFD technique employs
the coarser mesh to compute the sensitivity derivatives: the second re�nement is then located
at work≈ 5 (work≈ 1:6). Clearly, the work spent on the coarser levels becomes more relevant
with respect to previous applications, since the advantages of the coarse-grid evaluation of
the perturbed �ow-�elds are reduced or even missed. Figures 4 and 5 indicate that the work
required to obtain the more than satisfactory convergence level of −5:0, on the �nest mesh,
is about 11–13. This convergence level is even excessive for engineering applications: for
the transonic test-case, for example, the optimization has found, at this convergence level,
the optimal design parameters �1 = 1:2006, �2 = 0:5005, �3 = 0:1000 and �4 = 0:0997; the op-
timal airfoil (symbols) is perfectly superposed to the target con�guration (solid line), see
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Figure 5. Convergence histories (inviscid transonic).

Figure 3. Incidentally, the comparison with almost-exact sensitivities, computed by using
�nite di�erences on the �nest grid with well-converged perturbed �ow solutions and di�erent
��, provides a discrepancy usually ranging from 3 to 10%, with rare higher values, which
however never exceed 20%. This discrepancy is due to the MAFD approximation as well as
to the incomplete convergence of both the perturbed and the �nest-grid �ow solutions.
The MAFD progressive optimization has been �nally tested using the same target and

initial airfoils under laminar �ow conditions, with separation (M∞=0:8, Re=500, incidence
angle �=10◦): Figure 6 provides the convergence histories of the optimization. The two grid
re�nements are performed after 3 and 4 work units, respectively. Figure 6 indicates that the
work required to obtain the fully satisfactory convergence level of −5:0, on the �nest mesh,
is about 17.

6. CONCLUSIONS

A very e�cient and robust progressive-optimization procedure using MAFD for the compu-
tation of the sensitivity derivatives has been proposed and combined with an upwind �nite-
volume method for the Euler and the Navier–Stokes equations on cell-vertex unstructured
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Figure 6. Convergence histories (laminar).

triangular grids. The entire approach is cheap, �exible and easy-to-program; it also turns out
to be robust and highly e�cient, the converged design of an airfoil, under inviscid (subsonic
and transonic) and laminar �ow conditions, being obtained in a computational time equal to
that required by 11–17 multigrid �ow analyses on the �nest grid.
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